

ISOLATION OF A NEW HIGHLY CO₂ TOLERANT FRESH WATER MICROALGA *CHLORELLA* SP. KR-1

Ki-Don Sung, Jin-Suk Lee[†], Chul-Seung Shin and Soon-Chul Park

Biomass Team, KIER, P.O.Box 5, Taedeok Science Town, Taejon 305-340, Korea

(Received 26 February 1998 • accepted 27 May 1998)

Abstract – A fresh water microalga, which has tolerance to high concentrations of CO₂, was isolated. The KR-1 strain was identified as a genus *Chlorella*. Though *Chlorella* KR-1 showed maximum growth at 10 % (v/v) CO₂, the strain showed a good growth rate up to 50 % (v/v) CO₂. The results indicated the feasibility of the KR-1 strain for massive cultivation using condensed stack gases.

Key words : *Chlorella* sp., Highly CO₂-Tolerant Microalga, CO₂ Fixation

INTRODUCTION

Direct use of flue gas reduces the cost of pretreatment but imposes extreme conditions on microalgae such as high concentrations of CO₂ and the presence of inhibitory compounds like NO_x and SO_x. Most microalgal strains are known to be critically inhibited with air containing 50 ppm SO_x [Watanabe et al., 1992; Kurano et al., 1995]. Therefore, direct CO₂ fixation by culturing microalgae may be possible only for the flue gas from LNG-fueled plants which do not contain SO_x.

The flue gas from other fuels containing sulfur, like coal and heavy oil, should contain a significant amount of SO_x. It is suggested that the flue gas should be condensed to remove the inhibitory compounds by physicochemical methods such as absorption, adsorption, or membrane separation and then purged into the microalgal culture to fix CO₂ [Kodama et al., 1993; Yun and Park, 1997]. If the flue gas is once condensed by chemical and/or physical means, the gas is going to be purified as CO₂. Therefore the gas fed for microalgal cultivation could have up to 100 % CO₂ and a trace of toxic compounds. It has been reported, however, that concentrations of CO₂ above 5 % inhibit the growth of microalgae [Silva and Pirt, 1984; Lee and Tay, 1991]. Strains that grew fast at as high CO₂ as possible would be required.

Although a few works have been recently reported on the isolation of highly CO₂-tolerant microalgae [Watanabe et al., 1992; Kodama et al., 1993; Hanagata et al., 1992; Takeuchi et al., 1992], only Hanagata et al. were successful in isolating fresh water microalgae which grew fast up to 50 % CO₂ [Hanagata et al., 1992]. The CO₂-tolerant microalgae were identified to be *Chlorella* and *Scenedesmus* sp.

The objective of this work was to isolate new microalgae which had a high growth rate in the culture at high CO₂ concentrations and to determine their CO₂ tolerances.

MATERIALS AND METHODS

[†]To whom all correspondence should be addressed.
E-mail : bmjslee@sun330.kier.re.kr

1. Isolation of Microalgae

Microalgae were isolated from water samples in the vicinity of a Korean thermal power plant, Youngwol, by the methods described by Watanabe [Watanabe et al., 1992].

2. Culture Conditions

Microalgal culture experiments were conducted to determine the culture characteristics of the isolate, named the KR-1 strain. The algal strain was cultured in 200 ml modified M 4N medium [Watanabe et al., 1992] in 400 ml glass tubes, and growth rates were monitored at different CO₂ concentrations. They were illuminated at a light intensity of 110 μ mol/m²-sec by fluorescent tubes. The seed culture was centrifuged and washed before inoculation. Samples were removed daily from the vessels to determine the algal growth and pH of the medium. The temperature of the culture media was maintained at 30 °C unless otherwise indicated. The initial pH of the medium was 5.5 and was not regulated. The concentration of CO₂ was regulated by controlling the flow rates of air and CO₂ with a gas mass flow controller (905C-PS-BM-11, Sierra Instruments Inc., Monterey, USA) and measured by an on-line CO₂ monitor (IR-8400, Summit Analyzers Inc., Livermore, USA). The gas flow rate was fixed at 0.5 vvm.

3. Assay

The algal growth was determined by measuring the absorbance at 660 nm using a spectrophotometer (HP8452A, Hewlett-Packard Inc., Palo Alto, USA) which was converted to dry cell weight. Light intensities were measured by a light sensor (LI-250, LI-COR Inc., Lincoln, USA).

RESULTS AND DISCUSSION

1. Isolation of Microalgae

A new fresh water microalga was isolated which could grow well at 50 % CO₂. It is a single-cell green alga (named to strain KR-1), and the cell size is about 3-5 μ m (Refer to Fig. 1). The KR-1 strain was identified as a genus *Chlorella*.

2. Effects of CO₂ Concentrations

Chlorella KR-1 was cultured under continuous illumination with different concentrations of CO₂ ranging from air-level to

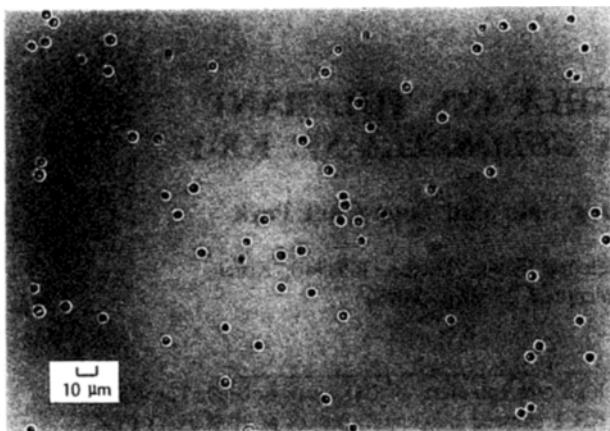


Fig. 1. Micrograph of *Chlorella* sp. KR-1.

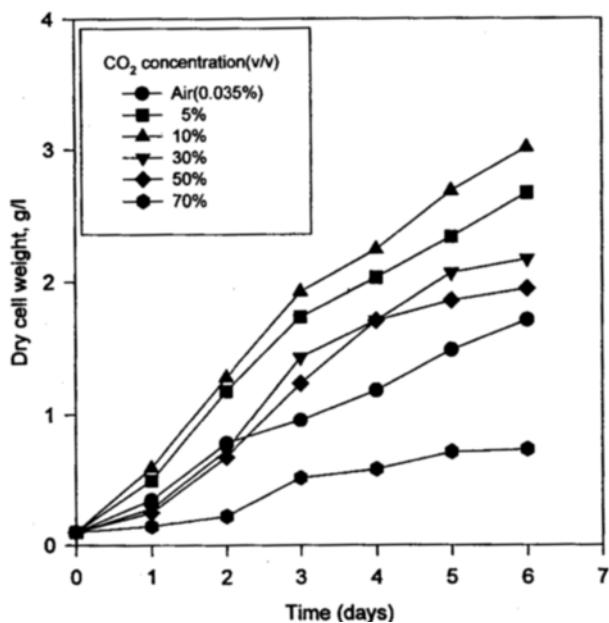


Fig. 2. Growth of *Chlorella* KR-1 at different concentrations of CO₂. The cultures were grown at 25 °C and a light intensity of 110 $\mu\text{mol}/\text{m}^2\text{-sec}$. pH in the medium was 4.1 at an initial stage.

70 % CO₂. Growth characteristics were evaluated by the following two parameters: the linear growth rate and the maximum cell concentration. Fig. 2 shows the growth of the KR-1 strain at different CO₂ concentrations.

The optimum growth rate was found in the culture at 10 % CO₂. The linear growth rate of KR-1 cultured with 10 % CO₂ was determined to be about 0.667 g/l-day and the max-

imum cell concentration was determined to be 3.01 g/l after 6 day cultivation. KR-1 maintained still high growth rates and cell concentrations at high CO₂ concentrations, of 30 % and 50 %. However, the lag period before starting growth tended to last longer at higher CO₂ concentrations. Although the growth rate is remarkably low at 70 % CO₂, *Chlorella* KR-1 still grows and reaches 0.71 g/l after 5 day cultivation, which was 7 times as high as that of the inoculum. All highly CO₂-tolerant microalgae ever reported [Hanagata et al., 1992; Kodama et al., 1993; Takeuchi et al., 1992] have no CO₂-fixation activity or growth at 70 % CO₂. These results show that *Chlorella* KR-1 is a promising strain to grow at extremely high CO₂ concentrations.

ACKNOWLEDGEMENT

This project was supported by the Korean Ministry of Environment and Ministry of Science and Technology.

REFERENCES

- Hanagata, N., Takeuchi, T., Fukuju, Y., Barnes, D.J. and Karube, I., "Tolerance of Microalgae to High CO₂ and High Temperature", *Phytochem.*, **31**(10), 3345 (1992).
- Kodama, M., Ikemoto, H. and Miyachi, S., "A New Species of Highly CO₂-Tolerant Fast-growing Marine Microalga Suitable for High-Density Culture", *J. Mar. Biotechnol.*, **1**, 21 (1993).
- Kurano, N., Ikemoto, H., Miyashita, H., Hasegawa, H., Hata, T. and Miyachi, S., "Fixation and Utilization of Carbon Dioxide by Microalgal Photosynthesis", *Energy Convers. Mgmt.*, **36**(6-9), 689 (1995).
- Lee, Y. and Tay, H. S., "High CO₂ Partial Pressure Depresses Productivity and Bioenergetic Growth Yield of *Chlorella pyrenoidosa* Culture", *Appl. Phycol.*, **3**, 95 (1991).
- Silva, H.J. and Pirt, S.J., "Carbon Dioxide Inhibition of Photosynthetic Growth of *Chlorella*", *J. Gen. Microbiol.*, **130**, 2833 (1984).
- Takeuchi, T., Utsunomiya, K., Kobayashi, K., Owada, M. and Karube, I., "Carbon Dioxide Fixation by a Unicellular Green Alga *Oocystis* sp.", *J. Biotechnol.*, **25**, 261 (1992).
- Watanabe, Y., Ohmura, N. and Saiki, H., "Isolation and Determination of Cultural Characteristics of Microalgae Which Functions under CO₂ Enriched Atmosphere", *Energy Convers. Mgmt.*, **33**(5-8), 545 (1992).
- Yun, Y. S. and Park, J. M., "Development of Gas Recycling Photobioreactor System for Microalgal Carbon Dioxide Fixation", *Korean J. Chem. Eng.*, **14**, 297 (1997).